Domain 3: Security Engineering

Securit	ty Models and Concepts		Secu	urity Mo	odels	System I	Evaluation and Assurance Levels	Harc	dware architecture
Security architecture framew A 2D	works D model considering interrogations such as what, where	MATRIX	- Provides ad to subjects f	cess rights or different	including discretionary access control objects.	Tructed Computer	Evaluates operating systems, application and systems. But not	Multitask	ing Simultaneous running of two or more tasks.
Zachman Framework and v desig	when with, etc. With various views such as planner, owner, igner etc.	(Access control mode	columns and	and execut rows as ca	e access defined in ACL as matrix apability lists.	System Evaluation	network part. Consider only about confidentiality. Operational assurance requirements for TCSEC are: System Architecture,	Multi prograr	mming Simultaneous running of two or more programs
Sherwood Applied Business Security To fa	facilitate communication between stakeholders		-A subject ca simple secu	annot read (rity rule)	data at a higher security level. (A.K.A	(TCSEC)	System Integrity, Covert Channel analysis, Trusted Facility Management and Trusted recovery.	Multi-proce	ssing CPU consists or more than one processor
Architecture (SABSA) Information Technology			- Subject in a security leve	l defined se l unless it is	curity level cannot write to a lower s a trusted subject. (A.K.A *-property		A collection of criteria based on the Bell-LaPadula model used		Processing Types One security level at a
Infrastructure Library Set o (ITIL)	of best practices for IT service management	(Confidentiality mode	el) - Access ma	trix specifie	s discretionary access control.	Orange Book	to grade or rate the security offered by a computer system product.		time. Multiple security levels at
Security architecture docum	nentation ablish security controls published by Standardization (ISO)		the same se	curity level	(A.K.A Strong star rule :) curity level of subjects change between	Red Book	Similar to the Orange Book but addresses network security.	Multi Sta	a time.
ISO/IEC 27000 Series and t	the Electrotechnical Commission (IEC)		levels.	d data from	a lower integrity level (A.K.A The	Green Book	Password Management.	Base Input (re ROM.
Information and Related Technology (CobiT)	ine goals and requirements for security controls and the oping of IT security controls to business objectives.		simple integ - Cannot wri	rity axiom) te data to a	n object at a higher integrity level.	ITSEC	Consider all 3 CIA (integrity and availability as well as confidentiality	System (B	IOS) load OS by the computer.
Types of security models		BIBA (Integrity model)	(A.K.A the * - Cannot inv	(star) integ oke service	ity axiom) at higher integrity. (A.K.A The	TCSEC	Explanation	N Device Fremeti	Nobile Security
State Machine Models secu	urity relationship between objects and subjects in each		invocation p - Consider p	roperty) reventing in	formation flow from a low security level	D	Minimal protection	Internal locks password) • A	(voice, face recognition, pattern, pin,
Alloc	cate each security subject a security label defining the		to a high see User: An act	urity level. ive agent		C1	resource protection)	tracking (IM Removable	IIE) • Mobile Device Management • e storage (SD CARD, Micro SD etc.)
Multilevel Lattice Models syste	tem. Enforce controls to all objects by dividing them into		 Transformation as read, write 	ation Proce es, and mod	dure (TP): An abstract operation, such dify, implemented through	B1	MAC; Labeled security (process isolation, devices)	IoT 8	& Internet Security
Arrar Matrix Based Models object	ange tables known as matrix which includes subjects and		Programmir • Constraine	g d Data Item	(CDI): An item that can be manipulated	B2 B3	MAC; Structured protection MAC; security domain	Network Segm (VLAN) • Phys	entation (Isolation) • Logical Isolation sical isolation (Network segments) •
objec	ect.	CLARK WILSON	Unconstrai	a IP ned Data Ite	em (UDI): An item that can be	A Common criteria assura	MAC; verified protection ance levels	Applicati	on firewalls • Firmware updates
Noninterference Models subje	ject, it consider preventing the actions that take place at level which can alter the state of another level.	(Integrity model)	- Enforces s	eparation of uditing	duty	EAL0 EAL1	Inadequate assurance Functionality tested	Internal v	vs external threat and mitigation
Information Flow Models Try to which	to avoid the flow of information from one entity to another ch can violate the security policy.		- Commercia - Data item v	I use vhose integ	rity need to be preserved should be	EAL2 EAL3	Structurally tested Methodically tested and checked	Natural threats	Hurricanes, tornadoes, earthquakes floods, tsunami, fire, etc
Confinement	d and Write are allowed or restricted using a specific		audited - An integrity	verificatior	n procedure (IVP) -scans data items and	EAL4 EAL5	Methodically designed, tested and reviewed Semi-formally designed and tested	Politically motivated	Bombs, terrorist actions, etc
Data in Use Scop	ping & tailoring		confirms the Information	ir integrity a is restricted	against external threats I to flow in the directions that are	EAL6 FAL7	Semi-formally verified, designed and tested	threats Power/utility	General infrastructure damage
	Security Modes	Information flow mod	el permitted by one security	the securit level to and	y policy. Thus flow of information from other. (Bell & Biba).	ITSEC security evaluati	on criteria - required levels	supply threats Man Made	(electricity telecom, water, gas, etc)
Use a Dedicated Security Mode subjects	e a single classification level. All objects can access all jects, but users they must sign an NDA and approved prior		- Use a dyna actions.	mic access	control based on objects previous	D + E0 C1 + E1	Discretionary Protection (DAC)	threats	Sabotage, vandalism, fraud, theft Liquids, heat, gases, viruses,
System High Security	users get the same access level but all of them do not get	Brewer and Nash	- Subject car cannot read	n write to ar another obj	object if, and only if, the subject ect in a different dataset.	C2 + E2 B1 + E3	Controlled Access Protection (Media cleansing for reusability) Labelled Security (Labelling of data)	Major sources to check	bacteria, movement: (earthquakes), radiation, etc
Mode	tem.	model)	- Prevents co Citation	onflict of int	erests among objects.	B2 + E4 B3 + E5	Structured Domain (Addresses Covert channel) Security Domain (Isolation)	Natu	Iral threat control measures
Compartmented Security Mode	ddition to system high security level all the users should e need-to-know clearance and an NDA, and formal approval		https://ipspe els-how-they	ecialist.net/ -work/	fundamental-concepts-of-security-mod	A + E6 Common criteria protec	Verified Protection (B3 + Dev Cycle)	Tornadoes, Earthquakes	occurrence, and impact. Allocate
Multilevel Security Mode	e two classification levels as System Evaluation and	Lipner Model Graham-Denning Mod	Commercial lel Rule 1: Trans	mode (Con sfer Access	fidentiality and Integrity,) -BLP + Biba , Rule 2: Grant Access, Rule 3: Delete	Descriptive Elements requ	 Rationale • Functional Requirements • Development assurance irements • Evaluation assurance requirements 	Floods	Raised flooring server rooms and offices to keep computer devices.
Assu	Virtualization	Objects, subjects and rules	8 Access, Rule destroy Obje	e 4: Read Ob ct, Rule 7: (oject, Rule 5: Create Object, Rule 6: Create Subject, Rule 8: Destroy	Certification & Accredit	Evaluation of security and technical/non-technical features to ensure	Electrical	UPS, Onsite generators
Guest operating systems run	n on virtual machines and hypervisors run on one or more	Harrison-Ruzzo-Ullma Model	an Restricts op set to prese	erations abl ve integrity	e to perform on an object to a defined		if it meets specified requirements to achieve accreditation. Declare that an IT system is approved to operate in predefined	Tomporatura	Fix temperature sensors inside server rooms , Communications -
Virtualization security	nost physical machines.		We	b Secu	rity	NIACAP Accreditation	conditions defined as a set of safety measures at given risk level. Process	. smperature	communication links as a back up to cable internet.
threats Cloud computing models Softw	tware as A Service (SaaS), Infrastructure As A Service	OWASP	Open-source guidelines, t	e application esting proce	n security project. OWASP creates edures, and tools to use with web	Phase 1: Definition	Phase 2: Verification • Phase 3: Validation • Phase 4: Post Accreditation		Man-Made Threats
Cloud computing threats Acco	S), Platform As A Service (PaaS) count hijack, malware infections, data breach, loss of data		security. Injection / S	QL Injectior	, Broken Authentication, Sensitive Data	Accreditation Types	Evaluates a system distributed in different locations	Explosions	occur Eg. Mining, Military training etc.
and i	Integrity	OWASP Top 10	Exposure, XI Misconfigur	ML External ation, Cross	Entity, Broken Access Control, Security -Site Scripting (XSS), Insecure	System Accreditation	Evaluates an application system.	Fire	Minimum 2 hour fire rating for walls, Fire alarms, Fire extinguishers
Register Direc	ectly access inbuilt CPU memory to access CPU and ALU.		Deserializat	on, Using C .ogging and	omponents with Known Vulnerabilities, I Monitoring	Site Accreditation		Vandalism	Deploy perimeter security, double
Stack Memory Segment Used	d by processors for intercommunication.	SQL Injections:	Attackers try back-end/se	to exploit l rver of the v	by allowing user input to modify the web application or execute harmful	Symme	Use a private key which is a secret key between two parties.	Froud/Th : 6	Use measures to avoid physical
System Architecture All of Memory Addressing Ident	of the code working in kernel mode/system.		code which results in de	leting datab	ectar characters inside SQL codes base tables etc.	Symmetric Algorithms	Each party needs a unique and separate private key. Number of keys = $x(x-1)/2$ where x is the number of users. Eg.	Flaud/Theft	Fingerprint scanning for doors.
Register Addressing CPU	J access registry to get information.	Cross-Site Scripting	Attacks carr	inputs and yout by inpu	parameters. Itting invalidated scripts inside		DES, AES, IDEA, Skipjack, Blowfish, Twofish, RC4/5/6, and CAST.		Site Selection
Direct Addressing Actua	ual address of the memory location is used by CPU.	(XSS)	Attackers us	e POST/GE	T requests of the http web pages with	Stream Based Symmetric Cipher	Encryption done bitwise and use keystream generators Eg. RC4.	Physical security goals	Intruders - Detect Intruders - Assess
Indirect AddressingSameBase + Offset AddressingValue	ne as direct addressing but not the actual memory location. Le stored in registry is used as based value by the CPU.	Cross-Request Forge	ry Prevention of the estimate	an be done	t malicious activity with user accounts. by authorization user accounts to carry	Block Symmetric Cipher	Encryption done by dividing the message into fixed-length blocks Eg. IDEA, Blowfish and, RC5/6.	Site selection	Visibility - External Entities -
*Citation CISS	SSP SUMMARY BY Maarten De Frankrijker		on the serve	Eg. using a r.	Random string in the form, and store it		Use public and private key where both parties know the public and the private key known by the owner .Public key encrypts	issues	Compartments
Encryption Conv	tographic lerminology		Cry	vptogra	phy	Asymmetric Algorithms	the message, and private key decrypts the message. 2x is total number of keys where x is number of users. Eg. Diffie-Hellman,		 Middle of the building (Middle floor) Single access door or entry point
Decryption Conv Key A val	avert from ciphertext to plaintext.	Cryptography Goals	• A – Authenti • I - Integrity	cation	(y)	Symmetric Algorithms	Proof.	Server room security	 Fire detection and suppression systems
Synchronous Encry	ryption or decryption happens simultaneously.	(P.A.I.N.)	• N - Non-Rep	oudiation.		Use of private key which i	s a Use of public and private key Use of both Symmetric and Asymmetric and Private Key		 Raised flooring Redundant power supplies
Asynchronous waiti	ting period.		Key space = Confidentia	ility	mber of key bits)	secret key	pairs Asymmetric encryption. Eg. SSL/TLS	Eanage and	 Solid /Unbreakable doors 8 feet and taller with razor wire.
Asymmetrical Key p	pair use for encrypting and decrypting. (One private and	Use of Cryptography	Proof of or Non-repud	igin ation		Provides confidentiality be not authentication or	Provides confidentiality, integrity, authentication, and or a data file into a smaller	Gates	Remote controlled underground concealed gates.
Use t	to verify authentication and message integrity of the		Protect dat Protect dat	a at rest a in transit		nonrepudiation	nonrepudiation fixed length chunks.	Perimeter Intrusion	Infrared Sensors - Electromechanical Systems - Acoustical Systems -
valid	der. The message use as an input to a hash functions for dating user authentication.		Code	<mark>s vs. C</mark> i	phers	decrypts	key decrypts and other key of the sender.	Detection Systems	CCTV - Smart cards - Fingerprint/retina scanning
Hash verify	fy message integrity by comparing sender and receiver	Classical Ciphers	Substitution Concealmer	cipher, Trar t.	nsposition cipher, Caesar Cipher,	Larger key size. Bulk encryptions	Small blocks and key sizes Small blocks and key sizes	Lighting Systems	Continuous Lighting - Standby Lighting - Movable Lighting -
Digital Certificate An el	electronic document that authenticate certification owner.	Modern Ciphers	Block cipher	, Stream cip	her, Steganography, Combination.		symmetric key.	Media storage	Emergency Lighting Offsite media storage - redundant
Plaintext Simp Ciphertext Norm	ple text message. mal text converted to special format where it is unreadable	Concealment Ciphe	text.		t to another written text to hide original	Faster and less complex. scalable	Not Slower. More scalable. between speed, complexity, and scalability.		backups and storage Faraday Cage to avoid
Cryptosystem	e set of components used for encryption. Includes	Substitution Ciphers	different lett	ers or block	of letters. I.e. One-time pad,		Hash Functions and Digital Certificates	Electricity	electromagnetic emissions - White noise results in signal interference -
Cryptanalysis Break	orithm, key and key management functions. aking decrypting ciphertext without knowledge of	Transposition Cipher	Reorder or s	cramble the	e letters of the original message where	Out-of-band key exchange	he In-band key exchange Hashing use message digests.		noise
Cryptographic Algorithm Processing	otosystem used. cedure of enciphers plaintext and deciphers cipher text.	manaposition cipitei	moved.	to decide t	ne positions to which the letters are	k	Key Escrow and Recovery	Static	Use anti-static spray, mats and wristbands when handling electrical
Cryptography The sunau	escience of hiding the communication messages from uthorized recipients.	Symmet	Comm	on Algo	orithms	Secret key is	divided into two parts and handover to a third party.	HVAC control	humidity levels.
CryptologyCryptologyDecipherConv	ptography + Cryptanalysis overt the message as readable.	Algorithm Asymme	tric Key length	Based on	Structure	confidentiality,	الم	levels	Heat - High Humidity - Low Humidity
Encipher Conv One-time pad (OTP) Encir	ivert the message as unreadable or meaningless.	DES Symmet	ric 64 bit	128-bit Lucifer	with 8 bits parity. • 16 rounds of transposition and	R	ecipient's Public Key - Encrypt message ecipient's Private Key - Decrypt message		such as tape drives. • 175 F can cause computer and
Key Clustering	erent encryption keys generate the same plaintext ssage.			algorithm	substitution (ECB, CBC, CFB, OFB, CTR)		Sender's Private Key - Digitally sign Sender's Public Key - Verify Signature		electrical equipment damage. • 350 F can result in fires due to
Key Space Every	ry possible key value for a specific algorithm.	3 DES or			3 * 56 bit keys • Slower than DES but higher security		PKI Structure	НУАС	paper based products.HVAC: UPS, and surge protectors
Algorithm data;	a; A.K.A. cipher.	TDES Symmet (Triple DES)	ric 56 bit*3	DES	(DES EE3, DES EDE3 ,DES EEE2, DES EDE2)	Certificates	Provides authorization between the parties verified by CA.	Guidelines	to prevent electric surcharge. • Noise: Electromagnetic
Transposition Rear	rranging the plaintext to hide the original message; A.K.A.		. 128,192 or	Rijndael	Use 3 different bit size keys Examples Bitlocker, Microsoft EFS	Certificate Authority	Authority performing verification of identities and provides certificates.	-	Interference (EMI), Radio Frequency Interference
Substitution Exch	hanging or repeating characters (1 byte) in a message with	AES Symmet	256 bit	algorithm	Fast, secure 10,12, and 14 transformation rounds	Certification Path	Help CA with verification. Certificate validity from top level.		Computer Rooms should have 15° C - 23°C temperature and 40 - 60%
Vernam Key o	of a random set of non-repeating characters. A.K.A. One				64 bit cipher blocks each block divide to 16 smaller	Certification Revocation	Valid certificates list	-	(Humidity)
Confusion Chan	inging a key value during each circle of the encryption.	IDEA symmetr	ic 128 bit		blocks Each block undergo 8 rounds of	List Online Certificate status	Used to check certificate validity online	Vale	• 40v can damage Circuits, 1000v Flickering monitors, 1500v can
Chan Avalanche Effect	en any change in the key or plaintext inside the cipher text.				transformation Example PGP	protocol (UCSP) Cross-Certification	Create a trust relationship between two CA's	control	cause loss of stored data, 2000v can cause System shut down or reboot,
Split Knowledge Segre	regation of Duties and Dual Control.	Skipjack Symmet Blowfish Symmet	ric 80 bit ric 32-448bit		64 bit Block cipher 64 bit Block cipher		Digital Signatures		17000 v can cause complete electronic circuit damage.
Work factor The t	time and resources needed to break the encryption.	TwoFish Symmet	ric 128, 192, 256		128 bit blocks	 Sender's private key use Provides authentication, 	d to encrypt hash value nonrepudiation, and integrity	Equipment safetv	Fire proof Safety lockers - Access control for locking mechanisms
Block Cipher Divid	ction. ding plaintext into blocks and assign similar encryption	RC4 Symmet	ric 40-2048		Example SSL and WEP Stream cipher 	Public key cryptography Users register public key Digital constant	used to generate digital signatures /s with a certification authority (CA). rated by the user's public key and well-little and the little sector is		sucn as keys and passwords. Maintain raised floor and proper
Stream Cipher Encry	orithm and key. rypt bit wise - one bit at a time with corresponding digit of				256 Rounds of transformation	the certificate issuer and	digital signature algorithm identifier.	Water leakage	drainage systems. Use of barriers such as sand bags
Dumpster Diving Unau	keystream. huthorized access a trash to find confidential information.	RC5 Symmet	ric 2048		• 32, 64 & 128 bit block sizes		Digital Certificate - Steps	Fire safety	Fire retardant materials - Fire suppression - Hot Aisle/Cold Aisle
PhishingSendSocial EngineeringMisle	ding spoofed messages as originate from a trusted source. lead a person to provide confidential information.	0.07	(40 to 128 bit)		64 bit block 12 transformation rounds		Enroliment - Verification - Revocation		Heat - Fuel) - Water, CO2, Halon
Script kiddie A mo	noderate level hacker that uses readily found code from the rnet.	CASI Symmet	CAST 256 (128 to 256		ו∠א סוג סוסג 48 rounds transformation	Cryptograp	Bitlacker: Windows full volume an anti-	Class	Fire extinguishers Type Suppression
Requirements	ts for Hashing Message Digest	Diffic	bit)		No confidentiality, authentication. or	Hardware -BitLocker and	onward) • truecrypt: freeware utility for on-the-fly openymtics	A	Common Water , SODA
Variable length input - easy to	to compute - one way function - digital signatures - fixed length output	Hellman Asymme	tric		non-repudiation • Secure key transfer	ti deci ypt	(discontinued)	_	compustible acid
Μ	1D Hash Algorithms				Uses 1024 keys • Public key and one-way function for	Hardware-Trusted	A hardware chip installed on a motherboard used to manage Symmetric and asymmetric keys, hashes, and digital	В	Liquid CO2, HALON, SODA acid
MD2 128-1	-bit hash, 18 rounds of computations				encryption and digital signature verification	Platform Module (TPM)	certificates. TPM protect passwords, encrypt drives, and manage digital permissions.	C	Electrical CO2, HALON
MD5 128-1	-bit hash. 4 rounds of computations, 512 bits block sizes,	RSA Asymme	tric 4096 bit		 Private key and one-way function for decryption and digital signature 	Link encryption	Encrypts entire packet components except Data Link Control	D	Metal Dry Powder
Merk MD6 Varia	iable, 0 <d≤512 bits,="" merkle="" structure<="" td="" tree=""><th></th><td></td><td></td><td>generation • Used for encryption, key exchange and digital signatures</td><td>End to end encryption</td><td>Packet routing, headers, and addresses not encrypted.</td><td>Water based</td><td></td></d≤512>				generation • Used for encryption, key exchange and digital signatures	End to end encryption	Packet routing, headers, and addresses not encrypted.	Water based	
SHA-0 Phas 1 hr o	sed out, collision found with a complexity of 2^33.6 (approx on standard PC) Retired by NIST		+++ic A -	Diffie -	Used for encryption, key exchange		Privacy (Encrypt), Authentication (Digital signature), Integrity, (Hash) and Non-repudiation (Digital signature) Fracil (Out	suppression	Wet pipes - Dry Pipe - Deluge
160-1 SHA-1 Merk	-bit MD, 80 rounds of computations, 512 bits block sizes, rkle–Damgård construction (not considered safe against	∟ıgamal Asymme	unc Any key size	algorithm	• Slower	Email (PGP)	MIME (S/MIME): Encryption for confidentiality, Hashing for integrity, Public key certificates for authentication and	D	• HI VIS clothes
224,	, 256, 384, or 512 bits, 64 or 80 rounds of computations,	Elliptic Curve Comto and Asymmetry	tric Any kev size	è	Used for encryption, key exchange and digital signatures		Message Digests for nonrepudiation.	Personnel safety	 Salety garments /Boots Design and Deploy an Occupant Emergency Plan (OED)
SHA-2 512 of with	אסר דיט 24 אוג אונא אונא אונג אונג אונג אונג אונג	m (ECC)			- speed and eπiciency and better security	Web application Cross-Certification	SSL/TLS. SSL encryption, authentication and integrity. Create a trust relationship between two CA's		Programmable multiple control
	Cryptograph	nic Attacks				IBATE	(Privacy, authentication, Integrity, Non Repudiation).		locks • Electronic Access Control - Digital
Passive Attacks Use eavest information	buropping or packet snifting to find or gain access to on.	Algebraic Attack Use	es known words	to find out t	he keys	IPSEC	encrypt payload (Faster)	Internal	scanning, Sensors • Door entry cards and badges for
Active Attacks Attacker tri attempting	ries airrerent methods such as message or file modification g to break encryption keys, algorithm.	FrequencyAttAnalysispat	acker assumes s terns in cipherte	substitution xt.	and transposition ciphers use repeated	10050	Authentication Header (AH): Authentication, Integrity, Non repudiation. Encapsulated Security Payload (ESP): Privacy	Security	staff • Motion Detectors- Infrared, Heat
Ciphertext-OnlyAn attackerAttackencryption.	er uses multiple encrypted texts to find out the key used for n.	Birthday Attack Ass	sumes figuring o sier than messag	ut two mes e with its o	sages with the same hash value is wn hash value	IPSEC components	Authentication, and Integrity. Security Association (SA): Distinct Identifier of a secure connection.		Based, Wave Pattern, Photoelectric, Passive audio motion
Known PlaintextAn attackerAttackencryption	er uses plain text and cipher text to find out the key used for n using reverse engineering or brute force encryption.	Dictionary Attacks Use	es all the words i	n the dictio	nary to find out correct key	ISAKMP	Internet Security Association Key Management Protocol	-	Create, distribute, transmission,
Chosen PlaintextAn attackerAttackforward that	er sends a message to another user expecting the user will nat message as cipher text.	Replay Attacks Att	acker sends the	same data	repeatedly to trick the receiver.		Authentication, use to create and manage SA, key generation. Key exchange used by IPsec. Consists of OAKLEV and	Key	application for key distribution,
Social EngineeringAn attackerAttackimpersonation	er attempts to trick users into giving their attacker try to ate another user to obtain the cryptographic key used.	Analytic Attack An	attacker uses kr	own weakr	esses of the algorithm	Internet Key Exchange (IKE)	Internet Security Association and Key Management Protocol (ISAKMP). IKE use Pre-Shared keys, certificates, and public key	manayement	should be stored secure by designated person only
Brute ForceTry all possDifferentialCalculate the	ssible patterns and combinations to find correct key. the execution times and power required by the cryptographic	Statistical Attack An	attacker uses kr	own statist	ical weaknesses of the algorithm		authentication.		Pilot testing for all the backups and
Cryptanalysis device. A.K	K.A. Side-Channel attacks	Reverse			ecrynt the key	Wireless encryption	Wired Equivalent Privacy (WEP): 64 & 128 bit encryption. Wi-Fi Protected Access (WPA): Uses TKIP. More secure than WEP	Testing	safety systems to check the working condition and to find any
Cryptanalysis		Engineering Use	a cryptographic	, aevice to (ou ypt the Key		WPAZ: USES AES. More secure than WEP and WPA.		Taults.

CISSP Cheat Sheet Series comparitech

Multitasking	Simultaneous running of two or more tasks.				
lulti programming	Simultaneous running of two or more programs				
Multi-processing	CPU consists or more than one processor				
Processing Types					
Single State	One security level at a time.				
Multi State	Multiple security levels at a time.				
Firmware	Software built in to in the ROM.				
Base Input Output System (BIOS)	Set of instructions used to load OS by the computer.				

Internal vs external threat and mitigation							
atural threats	Hurricanes, tornadoes, earthquakes floods, tsunami, fire, etc						
Politically motivated threats	Bombs, terrorist actions, etc						
ower/utility pply threats	General infrastructure damage (electricity telecom, water, gas, etc)						
Man Made threats	Sabotage, vandalism, fraud, theft						
ajor sources to check	Liquids, heat, gases, viruses, bacteria, movement: (earthquakes), radiation, etc						
Natu	Iral threat control measures						
Hurricanes, Tornadoes, arthquakes	Move or check location, frequency of occurrence, and impact. Allocate budget.						
Floods	Raised flooring server rooms and offices to keep computer devices .						
Electrical	UPS, Onsite generators						
	Fix temperature sensors inside server rooms, Communications -						